Texture Partitioning and Packing for Accelerating Texture-based Volume Rendering

نویسندگان

  • Wei Li
  • Arie E. Kaufman
چکیده

To apply empty space skipping in texture-based volume rendering, we partition the texture space with a box-growing algorithm. Each sub-texture comprises of neighboring voxels with similar densities and gradient magnitudes. Sub-textures with similar range of density and gradient magnitude are then packed into larger ones to reduce the number of textures. The partitioning and packing is independent on the transfer function. During rendering, the visibility of the boxes are determined by whether any of the enclosed voxel is assigned a non-zero opacity by the current transfer function. Only the subtextures from the visible boxes are blended and only the packed textures containing visible sub-textures reside in the texture memory. We arrange the densities and the gradients into separate textures to avoid storing the empty regions in the gradient texture, which is transfer function independent. The partitioning and packing can be considered as a lossless texture compression with an average compression rate of 3.1:1 for the gradient textures. Running on the same hardware and generating exactly the same images, the proposed method however renders 3 to 6 times faster on average than traditional approaches for various datasets in different rendering modes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth Mixed-Resolution GPU Volume Rendering

We propose a mixed-resolution volume ray-casting approach that enables more flexibility in the choice of downsampling positions and filter kernels, allows freely mixing volume bricks of different resolutions during rendering, and does not require modifying the original sample values. A C-continuous function is obtained everywhere with hardware-native filtering at full speed by simply warping te...

متن کامل

Interactive Volume Rendering of Large Sparse Data Sets Using Adaptive Mesh Refinement Hierarchies

In this paper, we present an algorithm that accelerates 3D texture-based volume rendering of large, sparse data sets, i.e., data sets where only a fraction of the voxels contain relevant information. In texture-based approaches, the rendering performance is affected by the fill-rate, the size of texture memory, and the texture I/O bandwidth. For sparse data, these limitations can be circumvente...

متن کامل

Simple Empty-Space Removal for Interactive Volume Rendering

Interactive volume rendering methods such as texture-based slicing techniques and ray-casting have been well developed in recent years. The rendering performance is generally restricted by the volume size, the fill-rate and the texture fetch speed of the graphics hardware. For most 3D data sets, a fraction of the volume is empty, which will reduce the rendering performance without specific opti...

متن کامل

Efficiently Rendering Large Volume Data Using Texture Mapping Hardware

Volume rendering with texture mapping hardware is a fast volume rendering method available on high-end workstations. However, limited texture memory often prevents the method from being used to render large volume data efficiently. In this paper, we propose a new approach to fast rendering of large volume data with texture mapping hardware. Based on a new volume-loading pipeline, the volume dat...

متن کامل

Improving cache locality for GPU-based volume rendering

We present a cache-aware method for accelerating texture-based volume rendering on a graphics processing unit (GPU). Because a GPU has hierarchical architecture in terms of processing and memory units, cache optimization is important to maximize performance for memory-intensive applications. Our method localizes texture memory reference according to the location of the viewpoint and dynamically...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003